Sanitation and water supply coverage thresholds associated with active trachoma

Anna N. Chard

Joshua V. Garn, Sophie Boisson, Rebecca Willis, Ana Bakhtiari, Tawfik al-Khatib, Khaled Amer, Wilfrid Batcho, Paul Courtright, Michael Dejene, Andre Goepogui, Khumbo Kalua, Biruck Kebede, Colin K. Macleod, Kouakou Ilunga Marie Madeleine, Mariamo Saide Abdala Mbofana, Caleb Mpyet, Jean Ndjemba, Nicholas Olobio, Alexandre L. Pavluck, Oliver Sokana, Khamphoua Southisombath, Fasihah Taleo, Anthony W. Solomon, Matthew C. Freeman

Emory University
USA
Background: Trachoma

- Leading cause of preventable blindness
- Blinding caused by repeated infection by Chlamydia trachomatis
 - Flies act as a vector
- **SAFE** strategy
 - Surgery to fix trichiasis
 - Antibiotics for already infected
 - **Facial cleanliness**
 - Dirty faces attract flies
 - Children touch their eyes when their face is dirty
 - **Environmental improvements**
 - Improved sanitation (eliminates fly breeding)
Research questions

Can community-level WASH access confer herd protection against trachoma?

• What are the associations between household access to water and sanitation and trachoma?
 • This has already been described in the literature
• Are there community coverage thresholds for water or sanitation that confer herd protection against trachoma?
 • Unique contribution to the literature
Methods

Study Context

• Data from **Global Trachoma Mapping Project (GTMP)**
• Data collected from 2012-2016
• Cross-sectional, cluster sampling in trachoma-endemic districts
• Our data
 • 13 countries in sub-Saharan Africa and Oceania
 • N=884,850 children ages 1-9
Methods
Statistical Analyses

• Used Multivariable mixed effects modified Poisson model

• **Outcome**: Active trachoma (right eyes, left eye, or both eyes)

• **Exposures**:
 • Household-level sanitation access (JMP definition)
 • Household-level access to improved water (JMP definition) in compound
 • Community-level sanitation coverage
 • Community-level improved water coverage

• Different types of “effects”
 • **Direct effect**: Contribution from own water/sanitation access
 • **Indirect/herd effect**: Contribution from neighboring water/sanitation coverage levels (can even protect those without household access)
 • **Total effect**: Contribution from direct and indirect/herd protection
Results

Sanitation coverage and trachoma

- Herd/indirect effects for sanitation:
 - Linear trend
 - Suggests threshold at 80% or 90%
Results

Sanitation coverage and trachoma

- Herd/indirect effects for sanitation:
 - Linear trend
 - Suggests threshold at 80% or 90%

- Household-level sanitation/direct effect was protective PR=0.87 (0.83, 0.91)
Results

Sanitation coverage and trachoma

• Herd/indirect effects for sanitation:
 • Linear trend
 • Suggests threshold at 80% or 90%

• Household-level sanitation/direct effect was protective PR=0.87 (0.83, 0.91)

• Herd effects for sanitation
 • Suggests protection among those without HH latrines

![Graph showing prevalence ratio for different sanitation coverage levels]
Results

Water supply coverage and trachoma

• Herd/indirect effects for water:
 • Linear trend
 • No clear threshold

• Household-level water/direct effect was protective PR=0.81 (0.75, 0.88)
Results

Water supply coverage and trachoma

• Herd/indirect effects for water:
 • Linear trend
 • No clear threshold

• Household-level water/direct effect was protective PR=0.81 (0.75, 0.88)

• No clear herd effect for water coverage and trachoma
Summary

High community sanitation coverage confers herd protection against trachoma

• Largest ecological study of the association between W&S and trachoma
 • “Hypothesis generating” study to inform global SAFE strategies

• Observed associations between household W&S and trachoma

• Study shows the importance of reaching high sanitation coverage levels
 • Higher levels of sanitation coverage is associated with lower trachoma
 • Protective associations for both those with and without latrines
Limitations

Several limitations important for study interpretation

• Potential for unmeasured confounding with cross-sectional data
• Exposures were primarily self-report
• Used a single observation to capture a complex time-varying WASH history
• Water quantity was not taken into account
• Sanitation utilization was not captured
Acknowledgements

• WHO gave financial support for JVG to do this research
• Global Trachoma Mapping Project
• Sightsavers, ITI, WHO

• Collaborators from many different countries:
 • Côte d'Ivoire, Egypt, Guinea, Malawi, Yemen, Nigeria, Vanuatu, Ethiopia, Lao People’s Democratic Republic, Solomon Islands, the Democratic Republic of the Congo, Mozambique, and Benin
Sanitation and water supply coverage thresholds associated with active trachoma: Modeling cross-sectional data from 13 countries