# Increasing rural drinking water security within Fijian watersheds

Jacqueline Thomas <sup>1</sup>, Shylett Anthony <sup>2</sup>, Thompson Daurewa <sup>2</sup>, Sikeli Gavidi <sup>2</sup>, Pierre Horwitz <sup>3</sup>, Aaron Jenkins <sup>3,4</sup>, Stacy Jupiter <sup>5</sup>, Shuang Liu <sup>1</sup>, Kinikoto Mailautoka <sup>2</sup>, Sangeeta Mangubhai <sup>5</sup>, Kelera Naivalu <sup>2</sup>, Timoci Naivalulevu <sup>2</sup>, Vilisi Naivalulevu <sup>2</sup>, Sikeli Naucunivanua <sup>5</sup>, Mereia Ravoka <sup>5</sup>, Andrew Tukana <sup>5</sup> Donald Wilson <sup>6</sup>, and Joel Negin <sup>4</sup>

- 1. School of Civil Engineering, The University of Sydney, Darlington, NSW 2008, Australia
- 2. Fiji Institute of Pacific Health Research, Fiji National University, Hoodless House, Suva, Fiji
- 3. School of Science, Edith Cowan University, Joondalup, WA, Australia
- 4. School of Public Health, The University of Sydney, Camperdown, NSW 2008, Australia
- 5. Wildlife Conservation Society, Suva, Fiji
- 6. College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji



Bloomberg Philanthropies









Achieving SDG6 in a Changing Climate



initiauve ......

Vibrant Oceans

# **Rural Fijian context**

Drinking water Basic service level (safely managed?)



Sanitation Basic service level (safely managed?)



#### **Typhoid Fever** Incidence ~ 30 to 50 per 100 000 annual



(Jenkins et al., 2016 EcoHealth)

# Watershed Interventions for Systems Health (WISH Fiji)

**Aim:** To use a Planetary Health approach to reduce the burden of disease from the three plagues: typhoid, leptospirosis and dengue, and to improve downstream ecosystem condition through active watershed interventions (including WaSH)









# **Monitoring program**





# Water and soil testing

#### **Routine samples**

#### **Physio-Chemical tests (immediate)**

- pH
- Temperature (use pH meter)
- Conductivity (uS or mS)
- Dissolved Oxygen (DO)
- [Chlorine (free and total)]

#### Chemical tests (< 12 hr)

- Turbidity (NTU)
- Ammonia (mg/L)
- Nitrate (mg/L)
- Nitrite (mg/L)
- Odour

#### Microbiology (< 6 hr cold)

- Total coliforms (TC)
- Escherichia coli (E. coli)

#### Targeted samples

#### Chemical tests (< 72 hr)

- Alkalinity
- Colour
- Sulphate
- Chemical Oxygen Demand (COD)
- Total Nitrogen
- Total Phosphorous

#### Microbiology (< 24 hr cold)

- Total coliforms (TC)
- Escherichia coli (E. coli)

#### Sample concentration

- Vacuum filtration
- Peristaltic pumps

#### **DNA Extraction (frozen)**

- Qiagen Power Water Kits
- Qiagen Power Soil Kits

#### **DNA** analysis

#### **Quantitative PCR**

- Salmonella Typhi
- Leptospirosis
- Feacal source tracking (Bacteroidales)

#### Metagenomics

- Pathogens
- Protozoa
- Microbiological ecology

#### Samples taken:

- ~ 2000 individual samples
- ~ 7 10 paramaters each
- > 18 000 data points

## Drinking water systems in the communities



# **Rural drinking water quality**

Setting risk thresholds for small supplies

| WISH FIJI                                        | High               | Medium                | Low               |
|--------------------------------------------------|--------------------|-----------------------|-------------------|
| Risk thresholds                                  | risk               | risk                  | risk              |
| <i>E. coli</i><br>(faecal indicator<br>bacteria) | > 100<br>cfu/100ml | 20 – 100<br>cfu/100ml | < 20<br>cfu/100ml |

WHO Guidelines: drinking water is considered safe when: *E. coli* < 1 cfu/100 mL

### **Water quality results for drinking water systems** *E. coli* (cfu/100mL) sampling in 2019 and 2020



# WSSP system assessment

#### Key risk factors

- Average age of the drinking water infrastructure is 30 years old (constructed in 1990)
- 12 communities (43%) use river or creek as their main alternate drinking water system
- 5 communities had no reservoir connected



# Drinking water risks

WSSP sanitary risk scores for water sources and pipes









# <image>

# **Community led interventions**

- 40 new infrastructure builds
- 27 repairs of the systems
- 19 maintenance activities
- 13 advocacy and awareness
- **Total = 99 interventions for drinking water**

# Adequacy of supply from primary drinking water source

Days of inadequate supply



| RESULTS                                    | High risk<br>> 2.5 score | <b>Medium risk</b><br>1.5 – 2.5 score | Low risk<br>< 1.5 score |
|--------------------------------------------|--------------------------|---------------------------------------|-------------------------|
| 2019 and<br>2020<br>Baseline and<br>WSSP   | 4                        | 19                                    | 6                       |
| <b>2022</b><br>Monitoring<br>post activity | 1                        | 21                                    | 7                       |

Adequacy of supply from primary water source

## **Primary drinking water source quality change** *E. coli* cfu/100 ml



| RESULTS                                    | High risk<br>> 100<br>cfu/100ml | <b>Medium risk</b><br>20 – 100<br>cfu/100ml | Low risk<br>< 20<br>cfu/100ml |
|--------------------------------------------|---------------------------------|---------------------------------------------|-------------------------------|
| 2019 and<br>2020<br>Baseline and<br>WSSP   | 7                               | 10                                          | 11                            |
| <b>2022</b><br>Monitoring<br>post activity | 1                               | 11                                          | 16                            |



# **Primary drinking water piped water quality** *E. coli* cfu/100 ml



| RESULTS                                    | High risk<br>> 100<br>cfu/100ml | <b>Medium risk</b><br>20 – 100<br>cfu/100ml | Low risk<br>< 20<br>cfu/100ml |
|--------------------------------------------|---------------------------------|---------------------------------------------|-------------------------------|
| 2019 and<br>2020<br>Baseline and<br>WSSP   | 8                               | 9                                           | 12                            |
| <b>2022</b><br>Monitoring<br>post activity | 3                               | 10                                          | 16                            |

## Primary drinking water piped water quality



# Thanks to the whole WISH team!



# Workshop.... If you would like to learn more

Advancing Systems Health Approaches to Achieve WaSH and Conservation Goals

